
GMDD
7, 4777–4827, 2014

Objectified
uncertainty

quantification

A. Berchet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Geosci. Model Dev. Discuss., 7, 4777–4827, 2014
www.geosci-model-dev-discuss.net/7/4777/2014/
doi:10.5194/gmdd-7-4777-2014
© Author(s) 2014. CC Attribution 3.0 License.

This discussion paper is/has been under review for the journal Geoscientific Model
Development (GMD). Please refer to the corresponding final paper in GMD if available.

Objectified quantification of uncertainties
in Bayesian atmospheric inversions
A. Berchet, I. Pison, F. Chevallier, P. Bousquet, J.-L. Bonne, and J.-D. Paris

Laboratoire des Sciences du Climat et de l’Environnement, CEA-CNRS-UVSQ, IPSL,
Gif-sur-Yvette, France

Received: 28 May 2014 – Accepted: 4 July 2014 – Published: 29 July 2014

Correspondence to: A. Berchet (aberchet@lsce.ipsl.fr)

Published by Copernicus Publications on behalf of the European Geosciences Union.

4777

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4777/2014/gmdd-7-4777-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4777/2014/gmdd-7-4777-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4777–4827, 2014

Objectified
uncertainty

quantification

A. Berchet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

Abstract

Classical Bayesian atmospheric inversions process atmospheric observations and
prior emissions, the two being connected by an observation operator picturing mainly
the atmospheric transport. These inversions rely on prescribed errors in the observa-
tions, the prior emissions and the observation operator. At the meso-scale, inversion5

results are very sensitive to the prescribed error distributions, which are not accurately
known. The classical Bayesian framework experiences difficulties in quantifying the im-
pact of mis-specified error distributions on the optimized fluxes. In order to cope with
this issue, we rely on recent research results and enhance the classical Bayesian in-
version framework through a marginalization on all the plausible errors that can be10

prescribed in the system. The marginalization consists in computing inversions for all
possible error distributions weighted by the probability of occurence of the error dis-
tributions. The posterior distribution of the fluxes calculated by the marginalization is
complicated and not explicitly describable. We then carry out a Monte-Carlo sampling
relying on an approximation of the probability of occurence of the error distributions.15

This approximation is deduced from the well-tested algorithm of the Maximum of Like-
lihood. Thus, the marginalized inversion relies on an automatic objectified diagnosis of
the error statistics, without any prior knowledge about the matrices. It robustly includes
the uncertainties on the error distributions, contrary to what is classically done with
frozen expert-knowledge error statistics. Some expert knowledge is still used in the20

method for the choice of emission aggregation pattern and sampling protocol in order
to reduce the computation costs of the method. The relevance and the robustness of
the method is tested on a case study: the inversion of methane surface fluxes at the
meso-scale with real observation sites in Eurasia. Observing System Simulation Exper-
iments are carried out with different transport patterns, flux distributions and total prior25

amounts of emitted gas. The method proves to consistently reproduce the known “truth”
in most cases, with satisfactory tolerance intervals. Additionnaly, the method explicitly
provides influence scores and posterior correlation matrices. An in-depth interpretation
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of the inversion results is then possible. The more objective quantification of the influ-
ence of the observations on the fluxes proposed here allows us to evaluate the impact
of the observation network on the characterization of the surface fluxes. The explicit
correlations between emission regions reveal the mis-separated regions, hence the
typical temporal and spatial scales the inversion can analyze. These scales proved to5

be consistent with the chosen aggregation patterns.

1 Introduction

Characterizing the global biogeochemical cycles of greenhouse gases requires reli-
ably understanding the exchanges at the surface-atmosphere interface. The descrip-
tion of these exchanges must encompass the absolute amounts of gas released to10

and removed from the atmosphere at the surface interface, the spatial distribution and
the temporal variability of the fluxes, and the determination of the underlying physi-
cal processes of emissions and sinks. Such an integral depiction is still missing for
most greenhouse gases (Ciais et al., 2013). One of the possible approaches to inquire
into the surface fluxes is the analysis of the atmospheric signal. The drivers of the15

spatial and temporal variability of the atmospheric composition are the transport, the
atmospheric chemistry and the surface fluxes (e.g., Seinfeld J. H. and Pandis S. N.,
2006). Therefore, monitoring the atmospheric composition and using a representation
of the atmospheric transport and chemistry with Global Circulation Models (GCMs) or
Chemistry-Transport Models (CTMs) can help in inferring back information on the fluxes20

(Bousquet et al., 2006; Bergamaschi et al., 2010). This approach, called atmospheric
inversion, suffers two practical issues in its implementation. First, the atmospheric com-
position is still laconically documented, though the number of global monitoring projects
with extensive surface observation networks and satellite platforms has been increas-
ing for more than two decades (e.g., Dlugokencky et al., 1994, 2009). Indeed, the25

satellite platforms have a global coverage but the observed atmospheric composition
is integrated on the vertical column, while the surface sites can provide continuous
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observations but at fixed point locations. Second, the atmosphere behaves as an inte-
grator and the air masses are mixed ambivalently through the transport (Enting et al.,
1993). Thus, the inverse problem of tracking back the fluxes from the variability of
the atmospheric composition cannot be solved deterministically. The Bayesian formal-
ism makes statistical analyses of the atmospheric signal possible in order to identify5

confidence intervals of fluxes compatible with the atmospheric composition (Tarantola,
1987).

Bayesian inversions have been extensively used at the global scale, providing in-
sights on the greenhouse gas budgets (e.g., Gurney et al., 2002; Kirschke et al., 2013;
Bergamaschi et al., 2013). However, non compatible discrepancies appear between10

the possible configurations of atmospheric inversion systems (Peylin et al., 2013). The
various configurations include the choice of the atmospheric transport, its spatial and
temporal resolutions, the meteorological driving fields, the type and density of the ob-
servations, etc. In the Bayesian formalism, some assumptions also have to be made
on the statistics of the errors the transport model makes, on the errors made when15

comparing a discretized model to observations (Geels et al., 2007) and on the con-
fidence we have on the prior maps and time profiles of emissions (Enting, 2002). All
these choices are based on technical considerations and on the expert perception of
the problem to solve. Comparing results based on different choices that are physically
adequate, but subjective, is difficult, especially to track inconsistencies, which enlarge20

the range of flux estimates.
In the following, we focus on the developement of an enhanced Bayesian method

that objectifies the assumptions on the statistics of the errors and that takes into ac-
count the unavoidable uncertainties generated by our lack of knowledge on these er-
ror statistics. The confidence ranges of the inverted surface fluxes are computed by25

a Monte-Carlo marginalization on the possible error statistics. The weight function for
the marginalization is inferred from an already-tested Maximum of Likelihood approach
(Michalak et al., 2005), processing the pieces of information carried by the differences
between the measurements and the prior simulated concentrations. The potential and
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consistency of the method is tested through Observing System Simulation Experiments
(OSSEs) on a realistic configuration of atmospheric inversion. The case study is the
quantification of methane fluxes in the Siberian Lowlands with a network of surface
observation sites that have been operated for a few years by the Japanese National In-
stitute for Environmental Studies (Sasakawa et al., 2010) and the German Max Planck5

Institute (Winderlich et al., 2010). The characterization of the region is challenging, with
co-located massive methane emissions from anthropogenic activity (oil and gas extrac-
tion) and from wetlands in summer. Moreover, the wetland emissions have a very high
temporal variability (due to their sensitivity to the water table depth and to the tempera-
ture; e.g., Macdonald et al., 1998; Hargreaves and Fowler, 1998). Their quantification10

is then difficult. In order to catch the influence of the sampling bias due to non-regularly
distributed observation sites and non-continuous measurements, we produce virtual
observations from a known “truth” at locations where real observations are carried out
and at dates when the logistical issues do not prevent the acquisition of measurements.
We then check the capability of our method to reproduce consistent flux variability and15

distribution with 7 degraded inversion configurations (perturbed transport, flat flux dis-
tributions, etc.).

In Sect. 2, we describe the theoretical framework of our method of marginalization.
The enhancements on the general theoretical framework need a cautious definition of
the problem to be implementable in term of computational costs and memory limits.20

In Sect. 3, guidelines for a suitable definition of the problem are developed. The whole
structure of the method is summarized in Sect. 4.1. In Sect. 4, we present the particular
set up of the OSSE carried out for proving the robustness of the method. The specific
Siberian configuration we test our method on is detailed in Sect. 5. The OSSE are
evaluated along defined objective statistical scores in Sect. 6.25

4781

http://www.geosci-model-dev-discuss.net
http://www.geosci-model-dev-discuss.net/7/4777/2014/gmdd-7-4777-2014-print.pdf
http://www.geosci-model-dev-discuss.net/7/4777/2014/gmdd-7-4777-2014-discussion.html
http://creativecommons.org/licenses/by/3.0/


GMDD
7, 4777–4827, 2014

Objectified
uncertainty

quantification

A. Berchet et al.

Title Page

Abstract Introduction

Conclusions References

Tables Figures

J I

J I

Back Close

Full Screen / Esc

Printer-friendly Version

Interactive Discussion

D
iscussion

P
aper

|
D

iscussion
P

aper
|

D
iscussion

P
aper

|
D

iscussion
P

aper
|

2 Marginalized Bayesian inversion

In statistics, marginalizing a probability density function (pdf) p(x) consists in rewriting
it as a sum of conditional probabilities p(x|z) weighted by p(z). Most atmospheric in-
versions do not rely on a marginalization over the possible prior and observation error
covariance matrices: they select just one of each, either because they do not have any5

information about the uncertainty of these matrices or because they cannot technically
exploit such information. We first describe the motivations for using a marginalized in-
version in Sect. 2.1. In Sect. 2.2, we describe the Monte-Carlo approach chosen in
order to compute the marginalization.

2.1 Motivations and outlines10

The surface-atmosphere fluxes, through transport, cause a variability in the atmo-
spheric mixing ratios of the species we are interested in. The atmospheric inversion
relies on the processing of the atmospheric varibility in order to infer back the surface-
atmosphere fluxes. Since the atmosphere is diffusive and mixes irreversibly air masses
from different origins, it is physically impossible to infer deterministic information on the15

fluxes from the integrated atmospheric signal alone (Tarantola, 1987; Enting, 2002).
We are then pursuing a thorough characterization of the pdf of the state of the sys-
tem (i.e. the spatial and temporal distribution of the surface fluxes), assuming some
prior knowledge on the system and having some observations of the atmospheric
physical variables related to our problem. That is to say, we want to calculate the pdf20

p(x|y0 −H(xb),xb) for all possible states x; y0 is a vector gathering all the available
observations, xb is the background vector including the prior knowledge on the state
of the system and H is the observation operator converting the information in the state
vector to the observation space. Typically, H embraces the atmospheric transport and
the discretization of the physical problem. In the scope of applications of the atmo-25

spheric inversions, the observation vector y
0 gathers measurements of dry air mole

fraction. As for the observation operator, it is computed with a model which simulates
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mixing ratios. As we are interested in trace gases, we will consider that the dry air mole
fractions can be assimilated to mixing ratios. In all the following, we also consider that
H is linear; hence, H is assimilated to its Jacobian matrix H and H(xb) = Hx

b. This
approximation is valid for all non reactive atmospheric species at a scale large enough
for the turbulence to be negligible. When the atmospheric chemistry must be taken into5

account (for instance with methane), either the window of inversion must be short com-
pared with the typical lifetime in the atmosphere for the linear assumption to be valid,
or the concentration fields of the reactant species (e.g., OH radicals for methane) must
be known.

In general, the characterization of the pdf is built within the Bayesian formalism with10

the assumption that all the involved pdfs are normal distributions (Enting et al., 1993).
The pdfs are then explicitly described through their node and their matrix of covari-
ance. In this case, the pdf p(x|y0 −Hx

b,xb) ∝N (xa,Pa) is defined by its node, xa, the
posterior state and its matrix of covariance, Pa. In addition to the linear assumption, we
also consider that the uncertainties are unbiased. That is to say: p(x−x

b) ∝N (0,B)15

and p(y0 −Hx
t) ∝N (0,R) where x

t is the true state of the system. In this context, we
define the uncertainty matrices B and R. B (resp. R) encompasses the uncertainties
on the background x

b (resp. on the measurements and on the model). Under these
assumptions, we can explicitely write the posterior vector and the posterior matrix of
covariance: xa = x

b +K(y0 −Hx
b) and Pa = B−KHB, with K = BHT(R+HBHT)−1 the20

Kalmam gain matrix.
The atmospheric inversion is straightforward (apart from technical issues in the im-

plementation of the theory on computers) as long as these uncertainty matrices are
defined. Indeed, some of these errors can be calculated unambiguously, such as mea-
surement errors. Other errors are derived, in most cases, following expert knowledge25

on, e.g., the behaviour of the atmospheric transport and of the surface fluxes. This
expert knowledge is acquired, for example, through extensive studies on the sensi-
tivity of the transport model to its parameterization and forcing inputs (e.g., Denning
et al., 1999; Ahmadov et al., 2007; Lauvaux et al., 2009; Locatelli et al., 2013), or by
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comparing prior fluxes to measured local fluxes (e.g., Chevallier et al., 2006). Some
studies also rely on purely physical considerations (e.g., Bergamaschi et al., 2005,
2010). But the complex and unpredictible structure of the uncertainties is hard to re-
produce accurately from the expert knowledge alone and an ill-designed tuple of uncer-
tainty matrices (R,B) can have a dramatic impact on the inversion results (e.g., Berchet5

et al., 2013; Cressot et al., 2014). The discrepancies between the possible configura-
tions of inversion can reveal some biases in the models: p(y0 −Hx

t) ∝N (η,R) instead
of p(y0 −Hx

t) ∝N (0,R). For example, the horizontal wind fields can be biased or the
vertical mixing in the planetary boundary layer systematically erroneous. That makes
it difficult to compare simulated concentrations in the boundary layer to measurements10

(e.g., Peylin et al., 2002; Dee, 2005; Geels et al., 2007; Williams et al., 2013; Lauvaux
and Davis, 2014). For our study, we neglect the biases in the inversion. We then focus
only on the mis-specification of the uncertainty matrices R and B.

In order to account for the uncertainties in the characterization of the uncertainties,
we compute the pdf p(x|y0−Hx

b,xb) by a marginalization on the uncertainty matrices.15

2.2 Monte-Carlo marginalization

In the marginalization framework, the complete pdf p(x|y0 −Hx
b,xb) is separated into

a sum of the contribution of each possible tuple of covariance matrices (R,B) weighted
by the probability of occurence of the said tuple (R,B):

p(x|y0 −Hxb,xb) =
∫
(R,B)

p(x|y0 −Hxb,xb,R,B) ·p(R,B|y0 −Hxb,xb)d(R,B)

∝
∫
(R,B)

N (x̃a, P̃a) ·p(R,B|y0 −Hxb,xb)d(R,B)
(1)20

In Eq. (1), (̃.) depicts a local dependence to (R,B). This general expression en-
compasses the classical case with only one tuple of matrices (R,B) which considers
p(R,B|y0 −Hx

b,xb) as a Dirac-like distribution. More generally, p(R,B|y0 −Hx
b,xb) is
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not so well known. Using Bayes’ rule, p(R,B|y0 −Hx
b,xb) can be re-written as:

p(R,B|y0 −Hxb,xb) =
p(y0 −Hxb|R,B,xb) ·p(R,B|xb)∫

(R,B)
p(y0 −Hxb|R,B,xb) ·p(R,B|xb)d(R,B)

(2)

Here, we assume no prior information on the uncertainty matrices. The distribution
p(R,B|xb) is then uniform. Moreover, the integral in the denominator of the right term
of Eq. (2) is computed over all the possible (R,B). It is then independent of the local5

(R,B). Thus, we can deduce from Eq. (2) that:

p(R,B|y0 −Hxb,xb) ∝ p(y0 −Hxb|R,B,xb) (3)

Then, Eq. (1) becomes:

p(x|y0 −Hxb,xb) ∝
∫
(R,B)

N (x̃a, P̃a) ·p(y0 −Hxb|R,B,xb)d(R,B) (4)

The complete pdf p(x|y0−Hx
b,xb) finally has the shape of an infinite sum of normal10

distributions, which are distributed along a Wishart-like distribution (a generalization
of χ2 distributions; Wishart, 1928). There is no reason for the complete pdf to be
a Gaussian itself; it cannot be described with only its node and its covariance matrix.
In order to properly describe the complete pdf p(x|y0 −Hx

b,xb), we use a Monte-
Carlo sampling method following Eq. (4). Sampling a distribution of normal distributions15

can be burdensome. Indeed, the Monte-Carlo sampling should be, at first sight, an
ensemble of Monte-Carlo samplings on all the local normal distributions. Yet, one can
note that the normal pdfs within the integral sign in Eq. (4) are symmetric with respect
to their node, located to the vector x̃a associated to the dummy tuple (R,B). Thus,
the complete pdf p(x|y0 −Hx

b,xb) can be sampled with only the local vectors x̃a, thus20

limiting the total number of needed samples.
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The last obstacle in the Monte-Carlo sampling is the characterization of the pdf of the
uncertainty matrices (R,B). This distribution of the error statistics is intricate. Neverthe-
less, its node is located at the Maximum of Likelihood (as developed by Michalak et al.,
2005) and it behaves as a χ2-shaped distribution. This Maximum optimally balances
the observation and prior state error variances according to the prior vector y0 −Hx

b
5

(Chapnik et al., 2004). From here, we decide to approximate the complicated distribu-
tion of the error statistics by a distribution of diagonal matrices (R,B). Using a subspace
of the possible error statistics can moderate the generality of the method. In particular,
no correlation of errors will be included with diagonal uncertainty matrices. Correla-
tions can be used in some frameworks to detect the biases in the system (Berchet10

et al., 2013). Additionnaly, correlations of observation or background errors can indi-
cate redundant pieces of information in the inversion system. An inversion computed
with no correlation then tries to use too much information and is expected to give too
optimistic a reduction of uncertainties on the fluxes. Nevertheless, in Sect. 3, we reduce
the observation and state spaces in order to compute the Monte-Carlo marginalization.15

Thus, we drastically limit the amount of information used in the system. In this config-
uration, the correlation issue is then attenuated and the diagonal assumption is valid.
For each diagonal term of the (R,B) tuple, we prescribe a χ2 distribution, the average
of which equals the associated term in the Maximum of Likelihood tuple.

A direct algorithm of Maximum of Likelihood (applied to atmospheric inversion in,20

e.g., Winiarek et al., 2012; Berchet et al., 2013), with no Monte-Carlo sampling, would
then provide a good approximation of the node of the posterior pdf we are looking for.
But, with such a direct algorithm, the infered pdf would have a wrong shape and erro-
neously under-estimated uncertainties on the result. At the Maximum of Likelihood, all
the pieces of information in the system are considered perfectly usable by the inver-25

sion which then gives too optimistic posterior uncertainties in this case. Estimations of
the Hessian matrix of the Likelihood at its maximum have been used to deduce bet-
ter uncertainties on the posterior fluxes (e.g., Michalak et al., 2005; Wu et al., 2013).
Hessian matrices are not always sufficient to characterize uncertainties, especially as
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the kurtosis of the Monte-Carlo distribution is bigger than the one of a Normal distri-
bution. Following this approach, additional statistical momenta should be used in order
to characterize all the posterior uncertainties. The Monte-Carlo approach makes this
characterization more straighforward. In Fig. 1, we draw an example of the distribution
of the Monte-Carlo posterior vector ensemble along a dimension of the state space.5

The black curve depicts the posterior distribution inferred with the Maximum of Likeli-
hood, with under-estimated spread compared to the Monte-Carlo distribution. On the
opposite, as illustrated by the green curve, a Normal distribution with the same node
and the same standard deviation gives a misleading flat shape. As for a Gaussian, we
then define the symmetric tolerance interval, so that 68.27% of the samples are in the10

range (the hatched portion of the histogram in Fig. 1). This interval is equivalent to the
gaussian ±σ interval, with σ the standard deviation. One shall remind that the com-
puted tolerance interval does not depict a Normal distribution. A Normal distribution
with the same tolerance interval (the red curve in Fig. 1) is still misleadingly flat. In all
the following, we will write the tolerance interval TI68, [xlow,xhigh].15

To summarize (as represented in the block diagram of Fig. 2), the Maximum of Likeli-
hood is first estimated using a pseudo-Newtonian algorithm, similarly to what has been
done in the literature (e.g., Winiarek et al., 2012; Berchet et al., 2013). We deduce
from this Maximum of Likelihood the plausible distribution of the uncertainty matrices
(R,B). Through a Monte-Carlo sampling of uncertainty matrices (R,B) along the de-20

duced distribution, we compute an ensemble of possible posterior vectors (x̃a
(R,B)). We

can then define the tolerance intervals TI68 and a posterior covariance matrix filled by
the covariances of the ensembles of state components with each others. The explicit
definition of this matrix can give valuable information on the ability of the inversion to
separate co-located emissions and emissions at different periods and locations. This25

capacity is used for the evaluation of the OSSEs in Sects. 4.2 and 6.
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3 Informed definition of the problem

The general approach defined in Sect. 2 applies a Monte-Carlo method on individual
inversions after the completion of a Maximum of Likelihood algorithm. This procedure
requires extensive amounts of memory and computation power. For instance, the ex-
plicit computation of H with a Chemistry-Transport Model (CTM) closely depends on5

the dimension of the state space: every column of the observation operator needs one
model simulation (Bousquet et al., 1999). Additionally, each step of the algorithm relies
on matrix products, determinants and inverses. At first sight, all these operations are as
many technical issues in high dimension problems. The dimensions of the observation
and state spaces should be reduce to damp these issues, but one shall keep reso-10

lutions physically relevant for the system we are analyzing. We show in the following
that approximations can be reasonably applied to the full-resolution problem while not
impacting the quality of the marginalized inversion results. Applying the Monte-Carlo
marginalized inversion is then technically feasible in a problem defined with a reduced
dimension from the full-dimension physical problem.15

3.1 Observation sampling and flux aggregation

In the inversion framework, the straighter way of minimizing the dimension of a problem
is to reduce the dimensions of the observation and state space. Aggregating compo-
nents of the state space and sampling observations are classically used for this pur-
pose. In most studies, the reduction of the problem is carried out arbitrarily. Here, we20

propose a more objective way to do so.
In the observation space, more and more surface observation sites nowadays pro-

vide quasi-continuous measurements (at least a few data points per minute in the data
set we use; Sasakawa et al., 2010; Winderlich et al., 2010). For long windows of
inversion at the regional scale (of a few weeks or months), such a frequency of ac-25

quisition generates a number of pieces of data technically impossible to assimilate all
together in our framework. Concerning the fluxes, one shall aim at a characterization
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of the fluxes on very fine pixels and at a high temporal resolution. As the window of
inversion lengthens and the domain widens, the number of flux unkowns grows expo-
nentially. The fluxes are then to be aggregated within regions of aggregation. However,
the aggregation can generate large errors (Kaminski et al., 2001; Bocquet et al., 2011),
which would mitigate the benefit of the Monte-Carlo marginalized approach compared5

to more classical ones applied in other atmospheric inversion studies with no aggrega-
tion (e.g., variational inversions; Courtier et al., 1994; Bergamaschi et al., 2005; Pison
et al., 2009).

Using the formalism from Bocquet et al. (2011), we define a representation ω that
encompasses the horizontal and temporal resolution of the fluxes, the choice of the10

regions of aggregation and the temporal sampling of the observations. The represen-
tation ω is defined through two operators Πω and Λω, which projects respectively the
full-resolution state and observation space to smaller ones. After the state space pro-
jection with Πω, the inversion applies corrections on regions of aggregation with fixed
emission distributions, instead of on single pixels. The adjoint of this operator, ΠT

ω, then15

redistributes total emissions on finer scales with the same fixed emission distribution.
The choice of Πω impacts both the state vector x and the observation operator H. The
observation sampling Λω can consist in averaging or picking one value per time step
(chosen accordingly to the physical resolution inquired into). For instance, one can de-
cide to average the observations by day in order to inquire into the synoptic variability20

of the atmosphere, related to the fluxes at the meso-scale. The observation sampling
applies to both the observation vector y0 and the observation operator H. The observa-
tion operator H computes the contribution from single sources to single observations.
The adjoint of the observation sampling, ΛT

ω, will then redistribute an average or a sam-
ple for each chosen time steps along this time step. The redistribution will follow the25

raw observed temporal profile within the said time step.
At first glance, choosing the aggregation pattern and the sampling protocol can be

considered as two independent physical problems. However, as they both influence
the dimension of the observation operator H, they cannot be fixed separately. More
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explicitely, we can write a formula, which links Πω and Λω. Indeed, our final objective
is to compute total posterior fluxes for each aggregated region that are as close as
possible to the posterior fluxes from a full-resolution inversion aggregated afterward.
That is to say, we want to confine the norm of xa

ω −Πωx
a
t with x

a
ω the posterior state

vector resolved in the representation ω and x
a
t the posterior state vector computed with5

a full-resolution representation of the problem. Algebraic manipulations lead to:

xa
ω −Πωx

a
t = ΠωBEω(y0 −Hxb) (5)

where:

Eω =
Pω HT ΛT

ω S−1
ω Λω

− HT S−1 ,

S = R+HBHT ,10

Sω = Λω

{
R+H(Aω +PωBPω)HT

}
ΛT
ω,

Pω = (Πω)TΠω,

Aω = (I−Pω)xtx
T
t (I−Pω),

xt = the true state of the system,

I = the identity matrix.15

In Eq. (5), R and B are the full-resolution matrices of the error statistics. ΠT
ω extrap-

olates the fluxes from the aggregated regions to a finer resolution following an a priori
repartition. The matrix Pω then redistributes the fluxes over a region with respect to the
prior repartition, but keeping the same total emissions on the region.20

For the aggregation errors to be limited, Eω must tend towards 0. Then, S and Sω
must be as close as possible to each other and the impact of Pω and of the sand-
wich product with Λω, ΛT

ω(·)Λω, must be as small as possible. In Sects. 3.1.1, 3.1.2
and 3.1.3 below, we explain how to reduce these terms. The exact estimation of Eq. (5)
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is complicated. In the following, only heuristic aggregation and sampling is chosen.
Considering the computer ressources we use, all the principles we define are applied
in order to limit the size of the observation space (resp. the state space) to a dimension
of roughly 2000 (resp. 1500). The errors intrinsic to the aggregation process and that
are unavoidable are controlled so that the benefit from the general marginalization is5

not wasted. For instance, in the meso-scale Eurasian case study described in Sect. 5,
these considerations lead to the aggregation patterns displayed in Figs. 2 and 6.

When the observation and the state space aggregation are chosen, the operator H
can be computed with the so-called “response functions”, based on forward simulations
of the transport for each state component (Bousquet et al., 1999).10

3.1.1 Observation space sampling

The sandwich product with Λω, ΛT
ω(·)Λω, aggregates the errors in the observation

space and diffuses them back within each aggregate along a prescribed temporal pro-
file. For example, it can typically compute the average error per day; then it allocates
for each sub-daily dimension an error proportional to the contribution of the related15

component of y0 to the daily mean. However, a daily averaging would be dominated
by the outliers (e.g, singular spikes or night observations when the emissions remain
confined close to the surface due to weak vertical mixing) that are generally associated
to very high observation errors (due to fine scale mis-representations of the transport
and erroneous night vertical mixing). For this reason, we decide to define Λω as the20

daily minimum of the observations carried out within a planetary boundary layer higher
than 500 m. Below this threshold, the vertical mixing by the model is known to be pos-
sibly erroneous (e.g., Berchet et al., 2013). The daily resolution is chosen in order to
keep a representation of the transport relevant to the meso-scale expectations on flux
characterization. Higher time resolution would not improve the inversion efficiency due25

to strong within-day temporal correlations of errors (Berchet et al., 2013).
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3.1.2 Observational constraints

One can notice that far from the observational constraints, the atmospheric dispersion
(depicted by the sandwich product with H, H(·)HT ) makes the potential errors negligible
compared to the errors generated in the areas close to the stations. Indeed, gathering
two close hot spots of emissions thousands of km away of the observation sites is5

not problematic since the air masses coming from the two spots will be well mixed.
On the opposite, two hot spots that are as distant from each other as the first two,
but close to an observation site, will generate plume-like air masses with a very high
sensitivity to the errors of mixing and transport in the model. We use an estimation of
the footprints (representing HT ) in order to fix the typical regions constrained by the10

network and avoid unfortunate grouping. Within these regions, we use a small spatial
resolution for the fluxes and the transport and fine aggregation patterns; outside of
them, we choose a coarse resolution and large aggregation patterns. An illustration of
aggregation patterns in our case study can be looked at in Fig. 6.

3.1.3 Flux aggregation15

Some terms in Eq. (5) are directly related to the aggregation of the fluxes. The term
HAωHT depicts the aggregation errors coming from the uncertain distribution and tem-
poral profile of the fluxes within each aggregation region, then transported to the obser-
vation sites. It must be close to 0. In our application below, this is particularly important
for hot spots of emissions the location of which is poorly known. The term HPωBPωHT

20

must be as close as possible to HBHT . The factors of divergence come from the areas
that are not well constrained by the observations. If, within a region of aggregation,
a part is upwind the observation sites, while the other is not seen, then the aggregation
errors will scatter on the unseen part of the region. The main sources of errors can
then be separated into two different types: (1) the resolution/representation type, and25

(2) the constraint type.
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The type-1 errors are mainly related to the resolution of the observation operator.
The models consider uniform the fluxes and the simulated atmospheric mixing ratios
on a sub-grid basis and neglects sub-grid processus. This discretization contributes
to type-1 errors, as “representation” errors (Tolk et al., 2008). Additionnaly, the dis-
tribution within each aggregation region is fixed and sub-region re-scaling are forbid-5

den. The fine resolution close to the observation network is bound to confine type-1
errors (e.g., Wu et al., 2011). Additionnally, the representation error is critical for co-
located emissions, especially when the typical temporal and spatial scales of these
emissions are different. For instance, grouping hot spots from oil extraction emissions
with widespread wetland emissions that quickly vary in time is hasardous. We then10

aggregate the emissions along their typical time and space scale, hence according to
the underlying physical process. An in-depth analysis of the footprints and the small
patterns of aggregation close to the observation sites should limit the type-2 constraint
errors. Area under high observational constraints should not be grouped with under-
constrained areas.15

The resolution and aggregation choices can be computed objectively, but at a very
high cost and only within a framework of prescribed frozen error matrices (Bocquet,
2009; Wu et al., 2011; Koohkan and Bocquet, 2012). For our purpose, we cannot afford
such computation costs and rely on heuristic choices: small resolution and aggregation
patterns close to the observation sites, aggregation by type of emission, separation of20

constrained/under-constrained areas by analyzing the footprints. These non-optimal
subjective choices may damp the efficiency of our method and must be carried out
cautiously.

3.2 Numerical artifacts

In addition to the need of defining a well-sized problem, smart adaptations can be25

applied to the computation of the method in order to enhance the efficiency of the algo-
rithm. We face several sources of numerical artifacts in the computation of the method.
In the pseudo-Newtonian Maximum of Likelihood algorithm, numerical artifacts are
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generated by the under-constrained regions. After a few steps, the gradient of the Like-
lihood is dominated by such regions and the algorithm stays stationary. Such regions
can be diagnosed using the diagonal terms of the influence matrix KH (following Car-
dinali et al., 2004). This matrix depicts the sensitivity of the inversion to elementary
changes in the observations. Strong observation constraints are related to high sensi-5

tivity. After stagnation, the regions with a diagnosed KH < 0.5 are then flagged out and
the algorithm is carried on. This way, the sufficiently constrained components of the
state vector are processed until the algorithm converges. A third to half of the regions
are flagged out this way in our case study.

The detection of the mis-representation of hot-spot plumes should also be enhanced.10

Despite the minimum daily sampling and the fine resolution close to the observation
network, the plume issue can still generate temporal and spatial mismatches. For ex-
ample, a point source can influence a station in the reality, but not in the model because
it has been mis-located, and conversely. This creates significant differences between
the simulated and the observed concentrations. The Maximum of Likelihood algorithm15

attributes such mismatches to prior errors and/or observation errors. High diagnosed
errors in the Maximum of Likelihood algorithm are then a criterion for plausible mis-
matches. We know such plumes must be flagged out from the inversion to avoid unrel-
evantly high influence from very local sources hard to represent. Since we notice that
the observation and prior computed errors follow a Fisher-like distribution, we choose20

to flag out the observations that are within the 95 % tail of the distribution.

4 Validation experiments

In Sect. 2, we describe our modified atmospheric inversion by marginalization. In
Sect. 3, we propose some rules to follow in order to properly define the problem. The
method has to be validated along objective criteria. In the following, we summarize25

the general structure of the method (Sect. 4.1) in order to identify the critical points to
test in the method. We deduce from these points some Observing System Simulation
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Experiments to carry out. In Sect. 4.2, we define the scores according to which the
method will be evaluated.

4.1 Method summary and test approach

The method described in Sect. 2 and 3 is condensed in the block diagram in Fig. 2.
The marginalized inversion takes the same input as any other atmospheric inversion:5

some atmospheric measurements and prior maps of fluxes with specified resolution
and temporal profiles. In Sect. 3, we give recommandations on the processing of the
“raw” inputs, so we get an observation vector y

0, a prior state vector x
b and an ob-

servation operator H that are small enough to be computable by the method. These
highlights are mainly the sampling of the observations per day (in accordance with our10

objective of characterizing meso-scale fluxes in our case study) and the aggregation
of the fluxes by regions (based on physical consideration and footprint analysis). The
Maximum of Likelihood algorithm processes y

0, xb and H in order to find a tuple of
optimal diagonal error matrices (Rmax,Bmax). This Maximum of Likelihood is found by
a Pseudo-Newtonian ascending algorithm. We then infer from (Rmax,Bmax) the approx-15

imate shape of the distribution of all the possible error matrices (R,B). We carry out
a Monte-Carlo sampling on these distributions of errors and get an ensemble of poste-
rior state vectors (x̂a). The processing of this ensemble provides the final output of the
method: a tolerance interval TI68 of the posterior state and the posterior correlations
between the components of the state space. The method also allows the explicit com-20

putation of the influence matrix KmaxH in order to analyze the constrained regions of
emissions only.

To summarize, the marginalize inversion processes two vectors and one operator:
y

0, xb, and H, as any other atmospheric inversion. The main difference resides into the
automatic diagnosis of the error matrices distribution, in contrast with the traditionnal25

assigning of frozen error matrices based on expert knowledge. Thus, we do not have
to inquire into the sensitivity of our method to the prescribed spatial correlations of flux
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errors, or to the error variances. Such a sensitivity is transposed to the choice of the
aggregation patterns and the sampling protocol, as defined in Sect. 3.1. We show in the
following that the chosen configuration of aggregation and the sampling protocole are
relevant in our case study. OSSEs are then to be carried out to evaluate the sensitivity
of the method to y

0, xb, H.5

We assume that, in our case, the method is not sensitive to errors in y
0. Indeed,

in all the following, we consider that the measurement errors are negligible compared
to transport errors; this is true for surface sites that fullfill the World Meteorological
Organisation strict recommandations for accuracy and precision (WMO/GAW, 2011).
This approximation does not hold for satellite total columns measurements, for which10

the transport errors are smoothed over the vertical atmospheric column and the in-
strument errors are higher. Hence, we do not perturb y

0 in order to represent the
instrumental uncertainties in the OSSEs.

The OSSEs are then based on perturbations of xb and H. The discrepancies be-
tween the background x

b and the “truth” xt are of two types: (1) the erroneous distribu-15

tion of the fluxes within aggregation regions, and (2) incorrect total emissions by region.
For example, in Eurasia, the maps of the distribution of the wetlands differ drastically
from a database to another (Frey and Smith, 2007). Apart from the distribution, the
amount of gas emitted by each process is uncertain, due to mis-parameterizations or,
for anthropogenic emissions, mis-specified activity maps (e.g., Rypdal and Winiwarter,20

2001). The transport H differs from the “true” transport mainly because of the resolution
of the model, the parameterization of subgrid processes (such as the vertical turbulent
mixing in the planetary boundary layer or the deep convection), and the meteorological
forcings fields (which are not necessarily optimized for transport applications).

The main sources of errors in the inversion are then: (1) a wrong representation of25

the transport (highly dependent of the transport model used, its resolution, its param-
eterization and the exactitude of forcing wind fields), (2) an erroneous distribution of
the fluxes within aggregation regions (each inventory and database has different sta-
tistical methods and parameters to reproduce surface fluxes), and (3) incorrect total
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emissions by regions. In order to evaluate the impact of each point on the inversion
result, we carry out OSSEs with perfect synthetic observations from the “true” emis-
sions and “true” transport (defined in the set-up in Sect. 5). We test the ability of the
marginalized inversion to reproduce the “true” fluxes or, at least, consistently include
the “truth” within the tolerance intervals. There are eight possible combination of cor-5

rect or perturbed phases of the 3 parameters. The “all true” combinaison is not relevant:
then y

0 −Hx
b = 0 and the Maximum of Likelihood algorithm is stationary. Seven com-

binations remain, detailed in Table 1. We run the marginalized inversion for the seven
OSSEs and evaluate them along the scores defined in Sect. 4.2.

4.2 Evaluation10

We expect an atmospheric inversion to provide reliable ranges of uncertainties for sur-
face fluxes. That is to say, for as many components of the state vector xi as possible,
the “truth” xt

i should be within the tolerance interval TI68, [xlow
i ,x

high
i ] (defined in Sect. 2).

In order to evaluate the ability of producing consistent fluxes, we define a relative score

zrel for each component of the state vector: (zrel)i = 2
|xa

i −x
t
i |

x
high
i −xlow

i

. Hereafter, all the scores15

will be expressed in % for better readibility. Statistically, zrel has no upper bound. Rel-
ative scores bigger than 100% are not statistically inconsistent, but, for the method to
be validated, we expect that the proportion of state components with zrel < 100% is
dominant.

Furthermore, the atmospheric inversion is supposed to reveal pieces of information20

to the understanding of the system. Then, we also expect that a correct relative score
below 100% is not reached by specifying huge tolerance intervals. To evaluate the
ability of the marginalization of getting close to the reality, i.e. providing valuable infor-

mation on the state of the system, we define an absolute score zabs: (zabs)i =

∣∣∣∣x
a
i

xt
i

−1

∣∣∣∣.

The smaller the absolute score, the more accurate the marginalized inversion.25
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An inversion also must be able to evaluate the observation constraints on the regions.
An objective estimator of the constraints on the regions is the influence matrix KH
defined in Sect. 3. The Kalman gain matrix depends on the tuple (R,B). Amongst all
the Monte-Carlo tuples, we compute the influence matrix for the tuple associated to
the Maximum of Likelihood. The diagonal terms of this matrix range from 0 to 1. They5

give for all components of the state space the constraint given by the observations. We
then define the influence score: (zinfl)i = (KmaxH)i . The closest to 100% these terms,
the more constraints the inversion provides. We can then deduce the typical range of
influence of the observation sites and detect the blind spots of the used network.

Another point most inversions do not compute is the typical temporal and spatial10

scales the inversion can differentiate in the fluxes, considering the atmospheric trans-
port and the density of the observations. Our marginalized inversion gives access to
an explicit matrix of correlations as defined in Sect. 3. Strong positive and negative
correlations between two components of the state space indicate that the inversion
cannot separate the contributions from the two components. For example, air masses15

observed at a station and coming from two regions upwind the station will have a mixed
atmospheric signal difficult to analyse. Co-located emissions are not necessarily differ-
enciated in the atmospheric signal. Moreover, in a regional framework, when a model
of limited area is used coupled to lateral boundary conditions (LBC), the inversion must
explicitly alert on the regions that cannot be separated from the boundary conditions.20

In the case of strong correlations in the posterior covariance matrix, it is not relevant to
try to infer specific information for the two separate regions. Then, we group the state
space components according to their posterior correlations. We define a threshold of
correlation rmax and associate couple of regions (i , j ) such that |ri ,j | > rmax. If we pre-
scribe rmax = 0, all the regions will be grouped; on the opposite, if rmax = 1, no group25

will be formed. The optimal correlation threshold is not evident. We test the grouping for
all possible rmax. We flag out from the processing of the results all the groups, which in-
clude some contributions from the LBC. Thus, from this post processing, we only keep
the regions that are clearly constrained by the observation sites, with no interference
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from the LBC. Moreover, we can infer the spatial and temporal scale that the inversion
can resolve from the grouping patterns.

For each possible rmax and each component i of the state space, we then have
defined 3 indicators:

(zrel)i = 2
|xa

i −x
t
i |

x
high
i −xlow

i

(zabs)i =

∣∣∣∣x
a
i

xt
i

−1

∣∣∣∣
(zinfl)i = (KmaxH)i

5

In Table 1, the three scores are averaged on the whole domain of interest for the
optimal correlation threshold rmax (as discussed in Sect. 6.1).

5 Set up of the OSSEs

We compute the OSSEs that we described in Sect. 4 in a realistic meso-scale case.10

We focus on a domain spanning over Eurasia, from Scandinavia to Korea. At this scale,
the air masses residence time is typically of ays to a few weeks. This time scale is small
compared to the lifetime of methane of 8–10 years in the atmosphere (mainly due to
oxydation by OH radicals; Dentener et al., 2003). Hence, the obervation operator can
be consider linear. We apply the method on a region characterized by significant fluxes,15

with colocation of different sources with different emission time-scales: Siberia. We de-
scribe the region of interest and the chosen “truth” for the experiments in Sect. 5.1. We
use two transport models in order to simulate the atmospheric transport. The technical
details on these models are summarized in Sect. 5.2. In Sect. 5.3, we explain how we
choose and compute the synthetic observations for our experiments.20
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5.1 Virtual true state xt

In the region of interest, the emissions of methane are dominated by wetland, anthro-
pogenic (here, mainly related to the oil and gas industry) and wildfire emissions. In
Fig. 3, the distributions of the wetlands and of the oil and gas industry in the region
are displayed. Anthropogenic emissions of methane in the region are mainly hot spots5

related to the intense oil and gas industry in the Siberian Lowlands and to the leaks
in the distribution system in population centers in the South part of Siberia. Wetland
emissions are mainly confined in the lower part of Siberia in the West Siberian plain,
half of which is lower than 100 m a.s.l..

The spatial distribution of the associated fluxes is deduced from: (1) EDGAR10

database v4.2 (http://edgar.jrc.ec.europa.eu) for year 2008 for anthropogenic emis-
sions, (2) LPX-Bern v1.2 process model at a monthly scale for wetland emissions
(Spahni et al., 2011), (3) GFED database at daily scale for wildfires (Giglio et al.,
2009). The EDGAR inventory uses economic activity maps by sectors and convolves
them with emission factors estimated in laboratories or with statistical studies (Olivier15

et al., 2005). LPX-Bern is an update of process model LPJ-Bern (Spahni et al., 2011).
It includes a dynamical simulation of inundated wetland areas, dynamic nitrogen cy-
cle, and dynamic evolution of peatlands (Spahni et al., 2013; Ringeval et al., 2013).
The model uses CRU TS 3.21 input data (temperature, precipitation rates, cloud cover,
wetdays) and observed atmospheric CO2 for each year for plant fertilization. GFED20

v4 is built from burnt area satellite product (MCD64A1). CH4 emissions at monthly
and daily scales are deduced from the burnt areas using the Carnegie-Ames-Stanford-
Approach (CASA model; Potter et al., 1993) and emission factors (van der Werf et al.,
2010). Wildire emissions can be very strong and are punctual in time and space; they
are then difficult to analyze by the inversion. Wildfires are included as inputs to the25

marginalized inversion, but are automatically filtered out during the computation. In
all the following, we evaluate the OSSEs only in terms of anthropogenic and wetland
emissions.
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The EDGAR fluxes are given at the yearly scale and the LPX fluxes are calculated
at a monthly scale. Additionnally, LPX monthly fluxes exhibit smoothed patterns while
wetland emissions can vary drastically from a point to another. We want the virtual
“truth” to reproduce the potential spatial and temporal variability of the emissions. To
do so, we intensify the spatial and temporal constrasts from the databases to the virtual5

“truth”. We then compute the “true” state vector xt by perturbing EDGAR emissions on
a monthly base and LPX on a weekly base. That is to say: x

t = α ⊗x
data, with the

vector α depicting the scaling factors by state space component, ⊗ the convolution
operator and x

data the emissions from the databases. The perturbations in α from
original EDGAR and LPX databases applied to get the “truth” are scaling factors up10

to 10. These scaling factors could have been chosen randomly. We infer them with
a raw inversion using real data. For both anthropogenic and wetland emissions, the
scaling factors can significantly differ from a period of inversion to another. We can
then evaluate the ability of the marginalized inversion to catch quick variations. The
distribution of the scaling factors α is shown in Fig. 4. These factors are plausible,15

knowing the uncertainties on the wetland emissions and gas leakage (Reshetnikov
et al., 2000). Such target scaling factors are at the edge of the validity of the Gaussian
assumption and of the positivity of methane fluxes. The ability of the marginalization to
recover such correction factors will prove its robustness.

At the meso-scale, we use a CTM (see Sect. 5.2.2) with a limited area domain.20

Initial and lateral boundary conditions (IC and LBC) are then also to be optimized in
the system to correct the atmospheric inflow in the domain. Lateral concentrations are
deduced from simulations at the global scale by the general circulation model LMDz
with the assimilation of surface observations outside the domain of interest (Bousquet
et al., 2006). The LBC are optimized by periods of 10 days. We aggregate the LBC25

along 4 horizontal components and 2 vertical ones (1013–600 hPa and 600–300 hPa).
As for anthropogenic and wetland emissions, we apply the scaling factors α on the
components of xt related to LBC by periods of 10 days.
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The OSSEs rely on x
b perturbed from x

t, or not. We apply two types of perturbations
as summarized in Table 1. In OSSE 1, 4, 5 and 7, we only implement prior fluxes
with different total emissions on the regions of aggregation. We take the emissions
of the raw inventories as background to test the ability of recovering “true” fluxes from
realistic background fluxes without assigning frozen prior errors. In OSSE 2, 4, 6 and 7,5

the distribution of the prior fluxes is modified from the “truth”. We choose all flat flux
distributions for each region of aggregation as prior fluxes.

5.2 Simulation of the transport H

We use two different transport models in order to evaluate the impact of the transport on
the inversion. We define HFLEXPART with the Lagrangian dispersion model FLEXPART10

and HCHIMERE with the Eulerian Chemistry-Transport Model CHIMERE. Any transport
model can be considered at some point biased compared with the reality. Confronting
the results from FLEXPART to those from CHIMERE will allow us to test the robustness
of our method to the biases.

5.2.1 The Lagrangian model: FLEXPART15

With the Lagrangian dispersion model FLEXPART (Stohl et al., 2005), we can compute
the footprints of the observations, hence HT

FLEXPART. We use FLEXPART version 8.2.3
to compute numerous back-trajectories of virtual particles from the observation sites.
The model is forced by ECMWF ERA-Interim data at an horizontal resolution of 1◦×1◦,
with 60 vertical levels and 3 h temporal resolution. Virtual particles are released in20

a 3-D box centered around each observation site with a 10 day lifetime backwards in
time. The footprints are computed on a 0.5◦×0.5◦ horizontal grid, following the method
of Lin et al. (2003), taking into account the boundary layer height at each particle
location. The footprints only have to be convoluted to the emission fields in order to
get simulated concentrations at the observation sites. The method for computing the25

footprints considers that only the particles within the boundary layer are influenced by
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surface emissions and that the boundary layer is well-enough mixed to be considered
as uniform. The uniform vertical mixing of the mixing layer can generate a bias on
the surface simulated concentrations. Such a bias is critical in the classical inversion
framework and consequently in the one we describe since all the uncertainties are
considered unbiased.5

FLEXPART can easily compute an estimation of the adjoint of the full-resolution
observation operator before choosing the representation ω. Hence, despite the ex-
pectable biases, we use this model to estimate the footprints of the network and deduce
the aggregation patterns needed to compute HCHIMERE.

5.2.2 The Eulerian model: CHIMERE10

Using the Eulerian mesoscale non-hydrostatic chemistry transport model CHIMERE
(Vautard et al., 2001; Menut et al., 2013), we explicitly define the observation opera-
tor HCHIMERE by computing the forward atmospheric transport from the emission ag-
gregated regions (defined according to Sect. 3 criteria) to the observation sites. This
model was developed in a framework of air quality simulations (Schmidt et al., 2001;15

Pison et al., 2007), but is also used for greenhouse gas studies (Broquet et al., 2011;
Berchet et al., 2013). We use a quasi-regular horizontal grid zoomed near the ob-
servation sites after Sect. 3 considerations. The domain of interest is of limited area
and spans over the mainland of the Eurasian continent (see Fig. 3). The average side
length of the grid cells near stations is 25 km, while it spans over 150 km away of the20

observation sites. The 3-D-domain embraces roughly all the troposphere, from the sur-
face to 300 hPa (∼ 9000 m), with 29 layers geometrically spaced. The model time step
varies dynamically from 4 to 6 min depending on the maximum wind speed in the do-
main. The model is an off-line model which needs meteorological fields as forcing. The
forcing fields are deduced from interpolated meteorological fields from the European25

Centre for Medium-range Weather Forecast (ECMWF) with a horizontal resolution of
0.5◦ ×0.5◦ every 3 h.
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5.3 Synthetic observations y0

We compute synthetic observations from the “true” state vector, with the CTM
CHIMERE. That is to say, in all the following, we consider that: y0 = HCHIMEREx

t. The
site and date of available observations are chosen according to the operated observa-
tion sites in the region. Thirteen Eurasian surface sites have been selected. These sites5

are maintained by NIES (Tsukuba, Japan; Sasakawa et al., 2010), IAO (Tomsk, Rus-
sian Federation), MPI (Iena, Germany; Winderlich et al., 2010), NOAA-ESRL (Boulder,
United States of America; Dlugokencky et al., 2009), and KMA (Seoul, Korea). The
description of the sites is given in Table 2. The observation sites do not carry out mea-
surements all the year round due to logistical issues and instrument dysfunctions. In10

order to reproduce this sampling bias, we generate synthetic observations only when
real measurements are available from January to December 2010.

6 Results and discussion

After the description of the set-up in Sect. 5, we now have a “true” state x
t and some

reference observations y
0. We also have two observation operators HCHIMERE and15

HFLEXPART and several possible prior fluxes x
b as inputs for the marginalized inversion

developed in Sect. 2. In order to evaluate the method, we now carry out the OSSEs
described in Table 1 following the complete procedure in Fig. 2. In Sect. 6.1, we exam-
ine the average robustness of the method. Then, in Sect. 6.2, we explore the spatial
efficiency of the marginalized inversion in our case study. In Sect. 6.3, we discuss the20

enhancement provided by our method compared to the classical Bayesian framework,
despite some limitations.
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6.1 Robustness of the method

The marginalization should consistently reproduce the “truth” or, at least, detect its in-
ability in characterizing the fluxes from the given atmospheric contraints. As detailed
in Sect. 4.2, the aggregation regions may have strong posterior correlations after the
marginalized inversions. This denotes the difficulties that the inversion encounters in5

separating some emissions. The aggregation regions can be grouped along correla-
tion thresholds rmax arbitrarily chosen in order to explicitely take into account the emis-
sion dipoles. In Fig. 5, we plot the profiles of the scores defined in Sect. 4.2 along the
possible correlation thresholds rmax for grouping the regions. Specifying a correlation
threshold rmax allows identifying the typical temporal and spatial scales that the inver-10

sion can separate. In the case of a limited domain CTM, the influence of the LBC and
of the inside fluxes can be mis-separated. The correlations take into account this issue
and the correlation threshold specifies the tolerance to such mis-separations.

For all OSSEs, the influence score zinfl increases with rmax. In the correlation pro-
cessing after the computation of the marginalized inversion, the threshold rmax depicts15

the degree of tolerance to mis-separation between inside fluxes and LBC. The higher
the threshold of tolerance rmax, the fewer inside fluxes are considered unseparable from
the LBC. Hence, fewer aggregation regions are eliminated from the inversion and more
fluxes are corrected by the inversion. As the number of constraints increases, we notice
that the absolute and relative scores also tend to increase with rmax. That is to say, if we20

only try to get average information on big regions, the posterior fluxes can be expected
to be closer to the “truth”. On the opposite, if we try to process too much spatial infor-
mation from the inversion, we must expect more discrepancies with the “truth”. In some
OSSEs, for wetlands regions, these discrepancies exceed the threshold of consistency
of zrel > 100%. One should find a balance between the physical scales one want to25

separate and the consistency of the results. In Table 1, we summarize the scores of
every OSSE for a chosen correlation threshold with respect to result consistency.
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Both in Table 1 and Fig. 5, looking at a given correlation threshold rmax, one would
expect influence, relative and absolute scores that get more wrong when the inversion
conditions degrades. The fossil fuel influence score follows this trend: the more per-
turbed the transport and the prior fluxes, the more state space components are consid-
ered un-inversible. The hot-spot regions of emissions are broadly filtered out and the5

remaining regions can be well characterized by the inversion even with wrong distribu-
tion and transport patterns. Some effects in the degrading conditions of the inversion
can though compensate each other. For example, the absolute scores of OSSEs 3 and
6 are worse than the scores of OSSEs 5 and 7. The situation for wetland emissions
is different. These emissions are smoother than oil and gas emissions and are then10

not excluded because of wrong transport or distributions. For this reason, the influence
score does not exhibit a clear trend with degrading inversion condition.

For wetland regions, transport seems to be the predominant factor of errors.
OSSEs 3, 5, 6 and 7 do not consistently reproduce the “truth” with relative scores
higher than 100 % when rmax ≥ 0.4. These discrepancies can be attributed to the very15

high variability prescribed in the “true” wetland emissions. An erroneous transport will
fail in detecting brutal changes of emissions at the synoptic scale. The wetland emis-
sions should then be grouped temporally and spatially in order to average the point
release of methane. The erroneous tolerance intervals can also be related to the bi-
ased transport in FLEXPART compared with CHIMERE. Since we filtered out most of20

the plumes with spatial and temporal mismatches with the observations, the horizontal
biases in the transport are confined. Concerning the vertical bias, a wrong simulated
vertical mixing in the planetary boundary will apply on all the fluxes. This bias will then
have an impact on the atmospheric concentrations that is relatively smoothed, uniform
and constant. Therefore, an accurate detection of such a bias is very difficult. Any in-25

version relies on the unbiased assumption of the errors. The inversion will attribute the
biases to the flux for wetland regions, impacting the result of the inversion. As other
inversions, despite the marginalization, it appears that the results on wetland regions
may be sensitive to vertical transport biases in the models.
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In Fig. 5, one can notice some outlier peaks for low rmax. For low rmax, very few re-
gions are computed in the inversion. The peaks are created by the regions that are not
anymore considered as mis-separated with the LBC when rmax increases. For some
OSSEs, these newly computed regions have very wrong scores and dominates upon
the other few computed regions. For this reason, one should be very careful in the cho-5

sen correlation threshold. In order to avoid the score unstability, the optimum threshold
should be chosen higher than 0.4. Above 0.5, as described above, the inversion is lim-
ited by the temporal and spacial variability of the fluxes to optimize and by the transport
biases. Then, it can not reach the requirement of consistent reproduced fluxes.

Thus, the marginalized inversion seems sensitive to transport biases and to fluxes10

varying too quickly, as any other inversions. Nevertheless, a post-processing is made
possible by the explicit computation of the posterior covariances and of the influence
matrix. This post-processing proves that the atmospheric inversion is not able to inquire
into very fine scales in our case study. The correlation grouping of un-differenciable
regions allows an accurate analysis of the best possible signal detectable by the inver-15

sion. In the following, we take a correlation threshold of 0.5 as a good balance between
sufficient constraints on the system and consistent posterior fluxes.

6.2 Spatial evaluation

We have chosen a threshold of correlation grouping the regions so that the averaged
scores on the whole domain of interest are optimal. The scores are not uniformly dis-20

tributed. In Fig. 6, the distributions of the three scores are displayed for fossil fuel
regions and wetlands for OSSE 1 (transport and distribution of the fluxes same as the
“truth”, perturbed masses by regions; see Table 1). We choose the “easiest” OSSE con-
figuration in order to evaluate the behaviour of the marginalized inversion in the best
configuration possible, thus getting the upper bound for the expectable quality of the25

results. Any realistic set-up is likely to give worse results. In the figure, the scores are
projected on the aggregation grid built on the considerations in Sect. 3. Most of the ob-
servation sites are located in the center of the domain (see Fig. 3). Then, the influence
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score is on average better close to the core of the network for the wetlands. For the
fossil fuel regions, the influence score is relatively high also upwind the monitoring net-
work (dominant winds blow west to east in the region). Additionnally to the network
density, the inversion suffers from mis-separation of side regions and LBC. For this
reason, side regions tend to be less constrained than center ones. However, one can5

notice in both wetland and fossil fuel maps that some center regions are significantly
less constrained than the core of the domain on average. These are regions of very
high and dense emissions close to the observation sites (< 500 km). The air masses
coming from these regions to the observation sites are plume shaped air masses. The
inversion has troubles in assimilating single plumes. In Sect. 3, filters have been im-10

plemented in order to detect these problematic regions. The marginalized inversion
effectively filtered out these regions.

The absolute and relative scores show unexpected patterns. Scandinavia and China
regions own some of the lowest absolute and relative scores. These two side regions
are filtered out most of the time because of strong correlations with the LBC compo-15

nents of the state space (confirmed by their low influence score). Consequently, when
not filtered out, these regions are very well and unambiguously constrained, so the
good relative and absolute scores. For the rest of the domain, the scores are mostly
the best, the closest to the observation network.

6.3 Limitations and benefits20

The marginalized inversion provides an objectified quantification of the errors in the
inversion system. With the Monte-Carlo approach we implemented, we are able to
consistently take into account the sources of uncertainties in the inversion process,
especially those from the prescribed error covariance matrices. As evaluated through
OSSEs, the method proved to consistently catch “true” fluxes on average in the par-25

ticular Siberian set-up. Moreover, the Siberian set-up is a difficult case study for the
atmospheric inversion, with co-located intense fluxes that vary at temporal and spa-
tial scales smaller than the meso-scale. The processing of hot-spots, critical in most
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inversion configurations, is consistently managed, through filters on the plume-shaped
air masses. An in-depth analysis of the temporal variability of the fluxes will be carried
out in a future work with the Siberian set-up and real observations. Additionnaly, as
a comparison, we carried out the same OSSEs on the same particular Siberian set-up,
but with expert-knowledge frozen error matrices. The correlation profiles and the spa-5

tial structures of the scores with the expert-knowledge matrices are not shown because
the general patterns are very similar to what is described for the marginalized inversion.
The patterns are similar, but the values of the scores are significantly depreciated from
the marginalized inversion to the expert-knowledge one. The expert-knowledge rela-
tive and absolute scores are several times bigger than the ones from the marginalized10

inversion, thus statistically incompatible with the “truth”.
The marginalized inversion explicitly computes the posterior covariance matrix and

the influence matrix. The physical interpretation of the inversion results are then en-
hanced by a clear analysis of the observation constraints to the fluxes. The processing
of the posterior correlations makes the detection of the dipoles and un-distinguishable15

regions possible. The influence of the lateral boundary conditions, specific to the meso-
scale and the use of limited area CTMs, is estimated. Thus, the regions upwind the
observation sites and mixed with lateral air masses can be excluded from the inver-
sion. From the correlations, the grouping of regions gives an estimate of the typical
spatial and temporal scale the method can compute. In our case, with few and distant20

observation sites, the groups of regions cover very large areas. Thus, a grid-point high
resolution inversion would not have given deep insights into the fluxes we are looking
at.

Despite all these benefits compared with the classical Bayesian framework, our
method still has limitations. The technical implementation of the method needs exten-25

sive computation power and memory requirements. For this reason, we have to drasti-
cally reduce the size of the problem to solve. The size reduction relies on rigourous con-
siderations difficult to compute. We then applied heuristic principles in order to choose
the aggregation patterns of the observations and the fluxes. This subjective procedure
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can modify the results of the inversion and must be carried out very cautiously. The
way we group the regions after the marginalized inversion in order to physically inter-
pret the results is also subjective. We choose a correlation threshold of 0.5 in order to
counter-balance the need of useful constraints from the inversion and the requirements
of consistently reproducing the “true” fluxes. Other thresholds could have been chosen5

and the typical distinguishable temporal and spatial scales would slightly differ from
one threshold to another. But, in any chosen correlation threshold, we notice that most
aggregation regions are grouped within bigger ensembles, suggesting that the cho-
sen aggregation patterns are small enough to have reduced impact on the inversion
post-processed results.10

The marginalized inversion suffers from transport biases as any other inversion.
However, the Maximum of Likelihood algorithm considers the biases as random errors
and includes them into the error matrix Rmax. The biases are then taken into account in
the marginalized inversion, though as random errors. Biases can be represented, or at
least detected, with non-diagonal matrices as suggested by Berchet et al. (2013), but15

a non-diagonal framework would make the computation of the marginalized inversion
critically complicated. In addition to the implicit inclusion of the biases as random error
in Rmax, we reduced the impact of the horizontal transport biases through filters on
the plume-shaped air masses. The vertical biases are smoother and more difficult to
detect. This issue must be inquired into in further works.20

7 Conclusions

At the meso-scale, inconsistencies between inversion configurations appear in the clas-
sical Bayesian framework. One of the main sources of inconsistencies is the specifi-
cation of the error matrices and the non inclusion of the remanent uncertainties on
these matrices. We developed a new Bayesian method of inversion from the classical25

Bayesian framework based on a marginalization on the error matrices and an objecti-
fied specification of the probability density function of the error matrices. This method
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needs very high computation power and memory ressources. To avoid technical limita-
tions, we reduced the size of the problem by agglomerating the fluxes by region, follow-
ing objective principles for reducing aggregation errors. We test this method through
OSSEs on methane in a domain of interest spanning over Eurasia with significant emis-
sions of different types and different time and space scales. The OSSEs are based on5

synthetic observations generated from a virtual truth. We evaluate the consistency and
robustness of the method on OSSEs with inversion configurations from the more favor-
able to the most disadvantageous one (perturbed atmospheric transport, flat flux distri-
bution and wrong total masses). The method produces very consistent and satisfactory
results. In most cases, the tolerance intervals given by the inversion include the “true”10

fluxes and the results remain close to the “truth”. The method also provides an explicit
computation of the constraints on the regions and allows flagging out regions critically
mis-separated from the lateral boundary condition. We hence have developed a robust
and objectified method able to consistently catch “true” greenhouse gas emissions at
the meso-scale and to explicitly group the regions that are physically un-distinguishale15

with the atmospheric signal only. In addition, we have a method that explicitly produces
posterior tolerance intervals on the optimal distinguishable time and space flux scales
and that computes the observation network influence on the fluxes.

The robustness of our method on the Siberian case with a biased transport prove
it can be generically applied to other meso-scale frameworks. The high spatial and20

temporal variability of the fluxes in Siberia ensures the possibility of using the system
in “easier” inversion set-up. Actual observation from the sites we used for the validation
of the method will be exploited in further steps of our work in order to quantify the “real”
methane fluxes in the Siberian Lowlands.
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Table 1. OSSEs summary. Three parameters of the inversion (sub-total masses emitted per re-
gions, emission distribution and transport) can be perturbed compared with the “truth”. The
seven possible combinations are depicted by=and 6= signs for each parameter and each
OSSE. Every OSSE is evaluated along the scores defined in Sect. 4.2. The scores are given
in % for the best correlation threshold for grouping the state space components as presented
in Sect. 4.2. The influence score must be as close to 100 % as possible. The other two scores
must be as small as possible. The regions are grouped along a correlation criterion rmax (see
Sect. 4.2); we present the scores only for rmax with the best results. For OSSE 7, the scores
are zeros for the fossil fuel regions because most of these regions were filtered out. The few
remainings are very well constrained.

OSSE 1 OSSE 2 OSSE 3 OSSE 4 OSSE 5 OSSE 6 OSSE 7

Inversion inputs:
x sub-totals 6= = = 6= 6= = 6=
x distributions = 6= = 6= = 6= 6=
H = = 6= = 6= 6= 6=
Optimal rmax 0.5 0.5 0.5 0.5 0.6 0.5 0.4

Scores: ff wet ff wet ff wet ff wet ff wet ff wet ff wet
Relative score 79 94 16 27 40 84 3 66 30 117 20 93 0 112
Absolute score 9 16 2 11 36 24 1 27 18 40 37 30 0 15
Influence 63 56 39 37 45 30 37 28 46 58 32 32 13 33
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Table 2. Eurasian site characteristics (Sect. 5.3). The altitudes of the sites are given as m a.s.l.
and the inlet height is in m a.g.l.

Station ID Location Inlet
Lon Lat Alt height
(◦ E) (◦ N) (m a.s.l.) (m a.g.l.)

Azovo AZV 73.03 54.71 100 50
Berezorechka BRZ 84.33 56.15 150 80
Demyanskoe DEM 70.87 59.79 75 63
Igrim IGR 64.42 63.19 25 47
Karasevoe KRS 82.42 58.25 50 67
Noyabrsk NOY 75.78 63.43 100 43
Pallas PAL 24.12 67.97 560 5
Shangdianzi SDZ 117.12 40.65 287 0
Tae-ahn Peninsula TAP 126.12 36.72 20 0
Ulaan Uul UUM 11.08 44.45 914 0
Vaganovo VGN 62.32 54.50 200 85
Yakutsk YAK 129.36 62.09 210 77
Zotino ZOT 89.35 60.80 104 301
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Table 1: OSSEs summary. Three parameters of the inversion (sub-total masses emitted per regions,

emission distribution and transport) can be perturbed compared with the ’truth’. The seven possible

combinations are depicted by = and 6= signs for each parameter and each OSSE. Every OSSE is

evaluated along the scores defined in Sect. 4.2. The scores are given in % for the best correlation

threshold for grouping the state space components as presented in Sect. 4.2. The influence score

must be as close to 100% as possible. The other two scores must be as small as possible. The

regions are grouped along a correlation criterion rmax (see Sect. 4.2); we present the scores only for

rmax with the best results. For OSSE 7, the scores are zeros for the fossil fuel regions because most

of these regions were filtered out. The few remainings are very well constrained.

OSSE 1 OSSE 2 OSSE 3 OSSE 4 OSSE 5 OSSE 6 OSSE 7

Inversion inputs:

x sub-totals 6= = = 6= 6= = 6=

x distributions = 6= = 6= = 6= 6=

H = = 6= = 6= 6= 6=

Optimal rmax 0.5 0.5 0.5 0.5 0.6 0.5 0.4

Scores: ff wet ff wet ff wet ff wet ff wet ff wet ff wet

Relative score 79 94 16 27 40 84 3 66 30 117 20 93 0 112

Absolute score 9 16 2 11 36 24 1 27 18 40 37 30 0 15

Influence 63 56 39 37 45 30 37 28 46 58 32 32 13 33

Fig. 1: Distribution of one component of the Monte-Carlo posterior ensemble. The histogram dis-

plays the raw posterior distribution. The dark hatched part of the histogram despicts the proportion

of the ensemble within the tolerance interval TI68, [xlow,xhigh] (as defined in Sect. 2.2). The red

curve represents the Normal distribution with the same node and tolerance interval. The green curve

stands for a Normal distribution with the same node and the same standard deviation.
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Figure 1. Distribution of one component of the Monte-Carlo posterior ensemble. The histogram
displays the raw posterior distribution. The dark hatched part of the histogram despicts the pro-
portion of the ensemble within the tolerance interval TI68, [xlow,xhigh] (as defined in Sect. 2.2).
The red curve represents the Normal distribution with the same node and tolerance interval.
The green curve stands for a Normal distribution with the same node and the same standard
deviation.
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Figure 2. Block diagram of the method. Green boxes represent the raw inputs of the system.
The blue ones are intermediary results and red ones the outputs to be interpreted. The yellow
ones depict the algorithms to compute. Details in Sects. 2 and 3. Insights for output analyses
are given in Sect. 4.2.
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Fig. 3: Topographic map of the domain of interest. The colorbar shows the altitude above sea level

(from ETOPO1 database; Amante and Eakins, 2009). Red dots (resp. orange triangle) depicts hot

spots of CH4 emissions (based on EDGAR v4.2 inventory; see Sect. 5.1) related to oil welling and

refineries (resp. gas extraction and leaks during distribution in population centers). Purple squares

highlight the observation site localization. Blueish shaded areas represent average inundated regions,

wetlands and peatlands (from the Global Lakes and Wetlands Database; Lehner and Döll, 2004)

Fig. 4: Distribution of the scaling factors applied to the emission databases in order to compute the

’truth’. All the emission component of the state vector have been included in the histogram. The

selection of the scaling factor distribution is detailed in Sect. 5.1.
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Figure 3. Topographic map of the domain of interest. The colorbar shows the altitude a.s.l. (from
ETOPO1 database; Amante and Eakins, 2009). Red dots (resp. orange triangle) depicts hot
spots of CH4 emissions (based on EDGAR v4.2 inventory; see Sect. 5.1) related to oil welling
and refineries (resp. gas extraction and leaks during distribution in population centers). Purple
squares highlight the observation site localization. Blueish shaded areas represent average
inundated regions, wetlands and peatlands (from the Global Lakes and Wetlands Database;
Lehner and Döll, 2004).
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(from ETOPO1 database; Amante and Eakins, 2009). Red dots (resp. orange triangle) depicts hot

spots of CH4 emissions (based on EDGAR v4.2 inventory; see Sect. 5.1) related to oil welling and

refineries (resp. gas extraction and leaks during distribution in population centers). Purple squares

highlight the observation site localization. Blueish shaded areas represent average inundated regions,

wetlands and peatlands (from the Global Lakes and Wetlands Database; Lehner and Döll, 2004)

Fig. 4: Distribution of the scaling factors applied to the emission databases in order to compute the

’truth’. All the emission component of the state vector have been included in the histogram. The

selection of the scaling factor distribution is detailed in Sect. 5.1.

33

Figure 4. Distribution of the scaling factors applied to the emission databases in order to com-
pute the “truth”. All the emission component of the state vector have been included in the
histogram. The selection of the scaling factor distribution is detailed in Sect. 5.1.
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(a) Fossil fuels

(b) Wetlands

Fig. 5: Score comparison on fossil fuel (up) and wetland (bottom) regions for all OSSEs along

correlation thresholds rmax of region grouping (see details in Sect. 4.2). (left) Influence correlation

zinfl profile. (center) Relative score zrel correlation profile. (right) Absolute score zabs correlation

profile. The red arrows depict the direction from lowest to best scores. The blue arrows denote the

direction of grouping, from all grouped (’G’, rmax = 0) to all separated (’S’, rmax = 1). The OSSE are

indexed along Tab. 1 numerotation. Thin (resp. thick) lines stand for correct (resp. perturbed) sub-

total emissions. Green (resp. brown) lines depict correct (resp. perturbed) emission distributions.

Plain (resp. dotted) lines represent correct (resp. perturbed) transport. As in Sect. 4.2, the scores are

noted in %.

34

Figure 5. Score comparison on fossil fuel (up) and wetland (bottom) regions for all OSSEs
along correlation thresholds rmax of region grouping (see details in Sect. 4.2). (left) Influence
correlation zinfl profile. (center) Relative score zrel correlation profile. (right) Absolute score zabs
correlation profile. The red arrows depict the direction from lowest to best scores. The blue
arrows denote the direction of grouping, from all grouped (“G”, rmax = 0) to all separated (“S”,
rmax = 1). The OSSE are indexed along Table 1 numerotation. Thin (resp. thick) lines stand for
correct (resp. perturbed) sub-total emissions. Green (resp. brown) lines depict correct (resp.
perturbed) emission distributions. Plain (resp. dotted) lines represent correct (resp. perturbed)
transport. As in Sect. 4.2, the scores are noted in %.
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(a) Fossil fuels (b) Wetlands

Fig. 6: Map of the average scores as defined in Sect. 4.2 for the OSSE 1 (see Tab. 1) projected on the

aggregation grid defined in Sect. 3. (up) Influence score zinfl. (middle) Relative score zrel. (bottom)

Absolute score zabs. The color maps have been chosen so that the redder the region, the better its

score (denoted by 	 and ⊕ symbols). The zoom and map physical projection are the same as in

Fig. 3.
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Figure 6. Map of the average scores as defined in Sect. 4.2 for the OSSE 1 (see Table 1)
projected on the aggregation grid defined in Sect. 3. (up) Influence score zinfl. (middle) Relative
score zrel. (bottom) Absolute score zabs. The color maps have been chosen so that the redder
the region, the better its score (denoted by 	 and ⊕ symbols). The zoom and map physical
projection are the same as in Fig. 3.
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